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We consider a capillary consisting of two coaxial cylinders whose core is filled with a nematic liquid crystal
�LC� subjected to the simultaneous action of both a pressure gradient applied parallel to the axis of the
cylinders and a radial low frequency electric field. We find the configuration of the director of the nematic,
initially with an escaped-like configuration, for the flow aligning LC 4�-n-pentyl-4-cyanobiphenyl �5CB� by
assuming hard anchoring hybrid boundary conditions. Also, we obtain the velocity profile parametrized by the
electric field and the pressure gradient for nonslip boundary conditions. Finally, we calculate exactly the
effective viscosity, the first normal stress difference, and the dragging forces on the cylinders. The results show
an important electrorheological effect and a directional non-Newtonian response with regions of flow thinning
and thickening.
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I. INTRODUCTION

There has been considerable interest in the use of rheo-
logical materials to design a large variety of electrorheologi-
cal �ER� devices. These materials are essentially fluids that
contain solid particles in suspension and that react to an ap-
plied electric field by showing dramatic and significant
changes in their viscosity and other material properties. For
instance, an ER fluid undergoes a transition from a liquid
state into a viscoelastic solid-like state under the application
of a strong electric field �1� that manifests as a large revers-
ible augment in its viscosity. The systems that usually exhibit
this ER transition are composed of individual particles that
become polarized by the applied field, and align themselves
into chains and filaments giving rise to a structure that is
responsible for the gelationlike transition mentioned above.
This occurs, for example, in concentrated colloidal suspen-
sions of solid particles in a dielectric medium or in some
special polymeric fluids �2�.

On the other hand, liquid crystals �LC� are fluids that
show long-range orientational order over distances many
times larger than the dimensions of their molecules �3�. The
intrinsic anisotropy of their molecules engenders macro-
scopic properties that are also anisotropic, as for instance, the
dielectric constant and the magnetic susceptibility. These
properties may also be modified by the action of external
fields. The use of LC as ER fluids put forward obvious ad-
vantages over the more conventional ER fluids made of sus-
pended particles. For example, the homogeneity is of par-

ticular importance for microsystems since small channels are
easily obstructed by suspended particles �4�. In addition, the
homogeneity of LC avoids the problems associated with the
settling of the dispersed phase, like agglomeration or sedi-
mentation; these complications are inexistent for LC.

Remarkable non-Newtonian phenomena have been pre-
dicted in nematic liquid crystals under shearing conditions
�5� and in the vicinity of a nematic isotropic transition �6�.
Also, in twisted nematic devices the optical bounce effect
has been studied and explained in terms of back flows �7�.
The feasibility of liquid crystal systems to produce a practi-
cal ER fluid has been demonstrated by Yang et al. �8�, who
have observed an increase of one order of magnitude of the
viscosity of a solution of a polymeric liquid crystal when
acted upon an external electric field in a rotational rheometer.
Recent measurements on a rectangular microchannel filled
with a nematic liquid crystal revealed high changes in the
flow resistance as a function of an applied electric field �4�.
Rodríguez et al. �9� have developed a model for studying the
ER effect in flowing polymeric nematics. In this model, they
proposed an asymptotic formalism to describe a pressure-
driven flow in planar cells and found an electrically induced
enhanced viscosity. For rectangular cells of polymeric nem-
atics Reyes et al. �10� have constructed a hydrodynamic
model to analyze the competition between a constant electric
field and a uniform shear flow.

However, in spite of the ample amount of ER devices that
have been developed �1�, our understanding of the basic
mechanisms responsible for the ER effect is, in general, poor.
The aim of this work is to study the response of a nematic
liquid crystal confined to the region between two coaxial
cylinders and subjected to the action of a constant pressure
drop along the axis of the cylinder and a radial low fre-
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quency electric field generated by a potential difference im-
posed between both cylinders.

The outline of the paper is as follows: In Sec. II we write
the nematodynamic equations for our system. Then, we con-
sider the particular case of a pressure-driven flow �Poiseuille�
and derive equations for the stationary orientational and ve-
locity profiles. In Sec. III, we use these equations to calculate
the apparent viscosity and, in Sec. IV, we calculate the first
normal stress difference, N1, as a function of the applied
electric field, and the external imposed pressure. Finally, in
Sec. V, we discuss our results and present the conclusions.

II. NEMATIC CONFIGURATION
AND VELOCITY PROFILE

Consider a pure thermotropic nematic confined between
two coaxial pipes with radii R1 and R2, under the action of a
radial low frequency electric field, as depicted in Fig. 1. Un-
der these conditions, the director’s configuration is spatially
homogeneous along the axis of the pipe and varies with r so
that, in a cylindrical coordinate system, the director varies as

n̂ = �sin ��r�,0,cos ��r�� , �1�

and we assume that it satisfies the hybrid hard anchoring
conditions

��r = R1� = 0, ��r = R2� = �/2, �2�

where ��r� is the orientational angle defined with respect to
the z axis, as shown in Fig. 1. We also assume that the
nematic is subjected to a constant pressure drop along the
axis of the cylinder that produces a shear flow profile along
the region confined by both cylinders given by

v = �0,0,vz�r�� , �3�

which satisfies the nonslip boundary conditions

vz�r = R1� = 0, vz�r = R2� = 0. �4�

Both, hard-anchoring and nonslip boundary conditions re-
strict the validity of our description to moderate values of the
external agents acting against the elastic forces at the cylin-
der’s wall. Nevertheless, use these assumptions since previ-
ous calculations �11� done for the apparent viscosity of a
nematic in Poiseuille flow using the same assumptions were

in good agreement with experimental data �12�. Therefore,
the hard-anchoring and nonslip boundary conditions as-
sumed in our model are correct for flow rates as large as
those we shall use here. These moderate pressure gradients
guarantee a laminar-flow regime. Larger pressure values may
induce oscillating boundary layers and long rolling states for
which the director moves out of the shear plane. Even more,
in this case, it would be possible to irreversibly switch be-
tween topologically distinct states �13�.

Using the formulation given in Refs. �14,15�, the full
nematodynamics which couples the equations of motion for
n̂ and the hydrodynamic velocity field v may be written in
the form

dni

dt
=

1

2
��kvi − �ivk�nk +

�

2
��il − ninl�nk��kvl + �lvk�

+
1

�1
��im − ninm�

�F
�nm

�5�

and

�
dvi

dt
= −

�p

�xi
+

�

�xj
��ij

r + �ij
d � , �6�

where � and p stand for the mass density and pressure field
of the nematic. Here the stress tensor of the nematic �=�r

+�d has been separated in two contributions: One reactive
�ij

r and the other dissipative �ij
d . Their explicit expressions

are given by

�ij
r � −

1

2
��nihj + njhi� −

1

2
�	 jl

�

�xi
nl + 	il

�

�xj
nl�

−
1

2

�

�xl
��	ij + 	 ji�nl − 	ilnj − 	 jlni� , �7�

�ij
d � 
1ninjn�n�v�� + 
4vij

+
�
3
5 − 
2
6�

�1
�nin�v�j + njn�v�i� . �8�

Here, the kinetic coefficients 
1, 
2, 
3, 
4, 
5, and 
6 are
the Leslie coefficients, �1=
3−
2 is the orientational viscos-
ity, and ��−�2 /�1 is a dimensionless reactive coefficient,
with �2=
2+
3. Due to the Parodi relation �16� 
2+
3
=
6−
5 only five of these coefficients are independent. In
these equations d /dt denotes the material derivative operator
and �k�� /�xk; �il is the usual Kronecker delta and F is the
total free energy of the nematic, which has an elastic and an
electromagnetic contribution. For the present model the elas-
tic part of the free energy is given by

Fel =
1

2
�

V

�K1�� · n̂�2 + K2�n̂ · � � n̂�2

+ K3�n̂ � � � n̂�2�dV , �9�

where the elastic moduli K1, K2, and K3 describe transverse
bending �splay�, torsion �twist�, and longitudinal bending
�bend� deformations, respectively, and the integration is over
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FIG. 1. �Color online� Schematics of a nematic liquid crystal
confined by two coaxial cylinders and subjected to a radial electric
field and a pressure gradient.
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the volume confined by the cylinders. The so-called molecu-
lar field hi is given by

hi �
1

�1
��im − ninm�

�F
�nm

, �10�

where the functional derivative �F /�nm reduces to

1

K1R2
2

�F
��

=
d2�

dx2 �cos2 � +  sin2 �� + �d�

dx
�21

2
� − 1�sin 2�

+
q − 1

2x2 sin 2� +
1

x

d�

dx
�cos2 � +  sin2 �� , �11�

where �K3 /K1 and the tensor 	 jl is given by

	 jl � �F/�� �

�xj
nl� − nrnl�F/�� �

�xj
nr� .

As usual, the symmetric part of the velocity gradient tensor
is

v jl �
1

2
� �

�xj
vl +

�

�xl
v j� . �12�

We notice that Eq. �11� does not involve K2 but only K1 and
K3. In other words, the fact that n̂ only depends on the vari-
ables contained on its own plane causes the absence of twist
deformation, so only splay and bend distortions are present.

The electromagnetic part of the free energy, Fem, taking
the field E0 along the radial direction r is, in MKS units

Fem = −
1

2
�

V

D · E0dV = −
1

2
�

V

�rr�r�E0
2dV , �13�

where �rr�r� is an element of the dielectric tensor �ij. Since
the nematic is a uniaxial medium, the dielectric tensor can be
written as

�ij = ���ij + �aninj , �14�

with �a=�	 −�� the dielectric anisotropy, and �	 and ��, the
parallel and perpendicular dielectric constants of the LC, re-
spectively.

We want to remark that even though Eq. �8� states for-
mally a constitutive relation where the stress tensor seems to
be proportional to gradient components of the velocity, the
fluid is not Newtonian because the director components ni
are coupled with the velocity field components by means of
Eq. �5�. Thus, � is not only an anisotropic relation of the
velocity, but is indeed a nonlinear function of the gradient
velocity components as we shall see explicitly below.

Using Eqs. �9�, �13�, and �14�, the total free energy, F,
becomes

F = Fel + Fem

=
1

2
�

V

�K1�� · n̂�2 + K2�n̂ · � � n̂�2 + K3�n̂ � � � n̂�2�dV

− �K1R2q�
R1

R2

�sin2 � + ��
s /�a

s�
dr

r
, �15�

where we have employed the electrostatic field E0

�−er�� / �r ln�R2 /R1�� generated between two coaxial cyl-
inders subject to a potential difference ��.

The elastic free energy of the LC is obtained by integrat-
ing Eq. �9� over the cylindrical volume. Then, expressing
� · n̂ and �� n̂ in cylindrical coordinates we obtain the free
energy per unit length, f �F /L, with L the length of the
cylinders:

f = �K1R2
�
R1/R2

1 ��d�

dx
�2

�cos2 � +  sin2 �� +
sin2 �

x2 �x dx

− q�
R1/R2

1

�sin2 � + ��
s /�a

s�
dx

x  , �16�

where x=r /R2, and q is an important parameter defined as

q � �a
s��2/�K1 ln2�R2/R1�� , �17�

where �a
s is the low frequency dielectric anisotropy. The pa-

rameter q represents the ratio of the electric and elastic en-
ergies; for q�1 the influence of the applied field is weak,
while for q�1 the field essentially overcomes the Frank’s
elastic forces. We should mention that there is no Fredericks
transition in this system since we are using the hybrid bound-
ary conditions given by Eq. �2�.

Therefore, Eqs. �5� and �6� can be written as

0 =
d2�

dx2 �cos2 � +  sin2 �� + �d�

dx
�21

2
� − 1�sin 2�

+
q − 1

2x2 sin 2� +
1

x

d�

dx
�cos2 � +  sin2 ��

+ �−
dp

d�

x

2
+

b

R2x
� R2

2

K1g���
�cos 2� − cos 2�0� , �18�

dvz

dx
=

2R2

�2g����−
dp

d�

x

2
+

b

R2x
� , �19�

where b is an integration constant and ��z /R2. After decou-
pling both equations �11�, we obtain the following equation
for ��x�:

0 =
d2�

dx2 x2�cos2 � +  sin2 �� + �d�

dx
�2x2

2
� − 1�sin 2�

+
q − 1

2
sin 2� + x

d�

dx
�cos2 � +  sin2 ��

−
�

g���
x2�x +

b�

x
��cos 2� − cos 2�0� , �20�

where b�=−bR2 / �K1�� while for vz we obtain

vz�x� = v0���
x

1 s

g„��s�…
ds + b��

x

1 ds

sg„��s�…� , �21�

with
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b� � −

�
R1/R2

1 s

g„��s�…
ds

�
R1/R2

1 ds

sg„��s�…

, �22�

and v0�2K1 /R2. Here, we have applied the boundary con-
ditions given by Eqs. �4� to obtain the velocity profile Eq.
�21�. In these equations cos 2�0=−�1 /�2 and

g��� = �2
1 sin2 � cos2 � + �
5 − 
2�sin2 � + �
6 + 
3�cos2 �

+ 
4� . �23�

Notice that in Eq. �21� g��� plays the role of a position de-
pendent viscosity �17� which is larger at the pipe border than
at the inner cylinder due to the boundary conditions.

In the previous equations, � is a dimensionless parameter
defined as

� �
1

2

dp

d�

R2
2

K1
, �24�

and represents the ratio of the hydrodynamic and elastic en-
ergies; for ��1 the influence of the applied pressure gradi-
ent is weak, while for ��1 the flow essentially overcomes
the elastic energy. Note that the influence of the pressure
gradient is greatly augmented for a large pipe radius R2.

Once ��x� has been determined numerically from Eqs.
�20� and �2� it can be inserted into Eq. �21� to obtain numeri-
cally vz�x�.

In what follows, we will present results for the
specific case of 4�-n-pentyl-4-cyanobiphenyl �5CB� liquid
crystal. The parameters used were TIN−T=10 °C with
TIN=35 °C, =1.316, K1=1.2�10−11 N, 
1=−0.0060 Pa s,

2=−0.0812 Pa s, 
3=−0.0036 Pa s, 
4=0.0652 Pa s, 
5
=0.0640 Pa s, 
6=−0.0208 Pa s, �1=0.0777 Pa s, �2
=−0.0848 Pa s �18�, and R1 /R2=0.5.

It is convenient to remark that the working temperature is
not near enough from the transition temperature to expect
critical fluctuations. However, thermal fluctuations in n̂ are
present and observable by the scattering of optical fields.
This effect is considerably reduced by the presence of the
imposed low frequency electric field which is used to de-
crease the correlation length in n̂ �3�.

In Fig. 2 we plot the configuration � as a function of x
parametrized by q and �. Notice first the presence of the
undistorted state corresponding to �=0 and q=0 which is
similar to the well known escaped configuration. As can be
seen for q=50, n̂ is much more aligned with the radial direc-
tion than for q=0. This is expected because the director tends
to be aligned in the direction of the electric field. For positive
��0, corresponding to negative velocity, n̂ tends to be
aligned in the axial direction whereas for negative ��0 the
trend is the opposite. Nevertheless, for q=50 the influence of
the pressure gradient is shadowed by the action of the elec-
tric field, especially at regions near the inner cylinder. In the
cases, �=−50 and �=0, the sign of the concavity of the
curves is the same but it is more pronounced for the case
�=−50, for which � may overpass the boundary value �
=90° by a small amount in a region near the external cylin-

der. In contrast, in the case �= +50 the curves exhibit con-
cavity changes.

In Fig. 3 we show the typical velocity profile vz for dif-
ferent values of � and an arbitrary value of the electric field
�in the figure q=50�. As it is expected, the magnitude of the
velocity increases, at every point in the pipe, for increasing
values of the magnitude of the parameter �. Also, Fig. 3
exhibits a clear difference in the magnitude of the velocity
between forward and backward flows, which is a conse-
quence of the asymmetry of the undistorted director’s con-
figuration �escaped configuration�. Moreover, the position of
the extrema of the curves, given by dvz /dx=0, and which
represent a vanishing shear stress, are closer to the inner
cylinder in all the curves, with no significant dependence on
the value of �. This is in contrast to the case of a Newtonian
flow for which the maxima is approximately at the middle
of the distance between both cylinders �19�. In Fig. 4 we
plot the velocity profile vz for different values of q and two
arbitrary values of the pressure gradient ��a� �=50 and �b�
�=−50�. This figure shows that the application of the elec-
tric field affects the velocity of the fluid mainly in the central
part of the pipe while the velocity near the walls remains
practically unaltered. We also observe a shift of the extrema
of the velocity curves towards the center of the pipe and a
reduction of the asymmetry with respect to the direction of
the flow for increasing values of the electric field, indicating
a tendency to adopt a Newtonian behavior. Moreover, the

FIG. 2. �Color online� Nematic’s configuration � as a function
of x for 5CB and R1 /R2=0.5.

FIG. 3. �Color online� Velocity profiles vz vs x for 5CB. The
parameters used were R1 /R2=0.5 and q=50.
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velocity profile is more affected by the electric field in the
case of backward flow than in the case of forward flow. This
asymmetry is a consequence of the fact that the undistorted
configuration is disposed in such a way that its director goes
from �=0 at the inner cylinder to �=� /2 at the outer cylin-
der in a counterclockwise way. If director’s configuration
were the opposite, that is, if it went from �=0 at the inner
cylinder to �=� /2 at the outer cylinder in a clockwise way,
then the response to the external flow would be also oppo-
site. Therefore, this could be a way to determine in which
sense the escaped configuration is actually placed. In general,
it can be asserted that the displacement of the extrema in the
velocity profiles is caused by the configuration distortions
induced by the coupling between the pressure-driven veloc-
ity and the electrically aligned nematic director.

III. BIASED ELECTRORHEOLOGICAL EFFECT

The viscosity function or apparent viscosity, �, is the quo-
tient between the shear stress and the magnitude of the local

strain rate. It is a function of the nematic’s director by means
of the expression Eq. �23� �17,20,21�. Since the orientational
angle � is strongly dependent on the electric field and since �
depends on �, it follows that the behavior of the system is
non-Newtonian.

From Eqs. �20� and �23� we obtain the spatial variation of
g��� within the pipe. To define a global property of the whole
capillary, we integrate the result over the cross section of the
pipe to obtain the averaged apparent viscosity

�̄�q,�� �
R2

2

R2
2 − R1

2�
R1/R2

1

g„��x�;q,�…x dx .

If we now plot �̄�q ,�� as a function of q and �, we get
the results displayed in Fig. 5. Panel �a� shows that �̄ always
increases as a function of the electric field q for any given
pressure gradient �. Furthermore, for the largest value of q
considered �q=50�, the value of �̄ for the largest backward
flow ��=50� increases about 50% with respect to its value in
the absence of electric field, whereas it increases only about
20% for the largest forward flow ��=−50�. In this sense we
can say that electrorheological effects are more evident for
backward flow than for forward flow. The reason why the
viscosity increases with increasing electric field is that the
nematic’s director is more aligned with the direction of the
field that is perpendicular to the direction of flow. On the
other hand, in Fig. 5�b�, we observe that for a given value of
the electric field and for the range of flow considered �−50
���50� the viscosity decreases as � increases. This means
that for backward flow ���0� the viscosity decreases as the
magnitude of the flow increases whereas for forward flow
���0� the viscosity increases as the magnitude of the flow
increases. Therefore, we have flow thinning in one direction
and flow thickening in the other. This directional response is
due to the fact that the initial undistorted nematic configura-
tion is asymmetrical. Therefore, for backward flow this con-
figuration is distorted so that nematic’s molecules are more
paralleled oriented in the direction of the flow decreasing the
viscosity while in the forward flow the nematic’s molecules
adopt a more perpendicular position with respect to the di-
rection of the flow increasing the viscosity. Also, in the for-
ward case most of the mechanical energy is elastically accu-
mulated in deforming the nematic’s configuration instead of
being used to move the fluid, as compared to the backward
case. In this sense the undistorted configuration is playing
the role of a biased spring inherent to the liquid, which is
stiffer in one direction than in the other.

FIG. 4. �Color online� Velocity profiles vz vs x for 5CB. The
parameters used were R1 /R2=0.5, �a� �=50, and �b� �=−50.

FIG. 5. �Color online� Averaged apparent vis-
cosity as a function of �a� the electric field q and
�b� the pressure gradient �.
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IV. FIRST NORMAL STRESS DIFFERENCE

Under conditions of shear flow, non-Newtonian fluids
usually show positive steady-state first normal stress differ-
ence, N1, over a range of shear rates. Also, N1 is zero or
positive for isotropic fluids at stationary flows over all shear
rates. In liquid crystalline solutions, positive normal stress
differences are found at low and high shear rates, while
negative values occur at intermediate shear rates �20�.

On the other hand, Marrucci et al. �22� have solved a two
dimensional version of the Doi model for nematics �23� in
which the molecules are assumed to lie in the plane perpen-
dicular to the vorticity axis, that is, in the plane parallel to
both, the direction of the velocity and the direction of the
velocity gradient. Despite this simplification, for strong
enough shear rates over which N1 is negative, Doi model is
in excellent agreement with observations. This result sug-
gests the possibility that negative first normal stress differ-
ences may be produced in a two-dimensional flow. Neverthe-
less, this is not the case for the Leslie-Ericksen approach
adopted in this paper as we shall see.

Let us now examine the effects produced by the stresses
generated after the reorientation process has taken place by
calculating the viscometric functions which relate the shear
and normal stress differences. For the geometry under con-
sideration and using the convention of Ref. �24�, the first
normal stress difference is defined by

N1 � �zz − �rr. �25�

Inserting Eqs. �5� and �3� into Eqs. �8�, �7�, and �25� we get

N1 =
K1

R2
2�d�

dx
�2

�cos2 � +  sin2 �� +
1

2R2

dvz�x�
dx

��
1�sin �

− cos �� + 
5 + 
6�cos 2� − ��
2 + 
3��sin � + cos �

+ cos 2� − cos 2�0�sin 2�� , �26�

which has been expressed in terms of the already calculated
quantities vz�x� and ��x�.

Various plots of N1 versus x for 5CB and several values of
q and � are displayed in Fig. 6 which shows the asymmetry
between the backward and forward responses due to the
pressure gradient. A direct comparison between Figs. 6�a�
and 6�b� shows that this asymmetry is strongly diminished
by the presence of the electric field that gets together in Fig.
6�b� those curves which are widely separated in Fig. 6�a� for
different values of �.

Figures 6�c� and 6�d� show N1 parametrized by q for �
=50 and �=−50, respectively. The plot confirms that the
effect of the field over N1 is to diminish the biased response
to the sign of the pressure gradient. This means that the
directional response and non-Newtonian behavior of the
nematic is smaller for stronger fields because this restrains
greatly the response to the pressure drop.

The integration of the first normal stress difference profile
over the cross section of the pipe,

N1�q,�� =
2R2

2

R2
2 − R1

2�
R1/R2

1

N1„��x�;q,�…x dx ,

renders the averaged first normal stress difference. This is
shown in Figs. 7�a� and 7�b� where we have plotted N1 as a
function of q and �. As can be seen from Fig. 7�a�, N1
depends almost linearly on q for backward flow, �=−50,
whereas it exhibits a minimum at q=10 for forward flow
�=50. Figure 7�b� displays clearly how contrasting is the
difference between forward and backward flows for small
values of the electric field q where a local minimum moves
to the right as � increases. Also, it is clear that the degree of
the directional dependent non-Newtonian behavior of this
confined nematic can be electrically controlled. We should
mention that even though there is a small region near the
outer cylinder for which N1 has small negative values,

FIG. 6. �Color online� First normal stress dif-
ference N1 vs x. �a� q=0, �b� q=50, �c� �=50,
and �d� �=−50.
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N1�q ,�� which is a quantity providing the global behavior, is
always positive because those regions represent only a small
portion of the whole section of the liquid crystal.

It is also useful to calculate the only nonvanishing stress
component �rz from Eq. �8�. We find, after doing similar
manipulations to those used to obtain Eq. �26�, that

�rz =
1

2R2
�
1 sin2 � cos2 � + 
4 + 
5 sin2 �

+ 
6 cos2 ��
dvz�x�

dx
+

1

2
�
2 − 
3�sin 2���

2
�sin �

+ cos ��
dvz�x�

dx
+

�

g����x +
b�

x
��cos 2� − cos 2�0�� ,

which evaluated on both cylindrical walls and integrated
over the surface of each cylinder, provides the dragging
forces, D1 and D2, per unit of cylinder length, exerted on
each cylinder by the flowing nematic. The explicit expres-
sions of these forces can be written, respectively, as

D1 = 2�R1��rz�x=R1/R2
�27�

=
�R1

R2
�
4 + 
6��dvz�x�

dx
�

x=R1/R2

�28�

=
�R1�
4 + 
6�v0��2

R2�
3 + 
4 + 
6� �R1

R2
+

R2b�

R1
� , �29�

D2 = 2�R2��rz�x=1 �30�

=��
4 + 
5��dvz�x�
dx

�
x=1

�31�

=−
��
4 + 
5�v0��2

�
4 − 
2 + 
5�
�1 + b�� . �32�

In Fig. 8, we plot D1 and D2 as a function of q and �. We
observe that both D1 and D2 have an almost constant value
as a function of q, but a linear decrease as a function of �.

FIG. 7. �Color online� Averaged first normal
stress difference as a function of �a� q and �b� �.

FIG. 8. �Color online� Dragging forces, D1

and D2, at the surfaces of the capillary as a func-
tion of q and �.
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V. CONCLUDING REMARKS

We have constructed a hydrodynamic model for a nematic
liquid crystal that is confined between two coaxial cylinders
and subjected to the simultaneous action of a radial electric
field and an external pressure gradient. Using the Ericksen-
Leslie-Parodi nematodynamics, we have written and solved
numerically the exact stationary equations for the director’s
configuration and velocity profile. The non-Newtonian ef-
fects are clearly manifested in the behavior of the velocity
profiles whose maximum or minimum move toward the in-
ner pipe with respect to the corresponding Newtonian case.
Moreover, the effect of the electric field is present mainly in
the central part of the capillary whilst the action of the pres-
sure gradient affects the velocity at all the points of the pipe,
including the regions near the walls.

We have shown that the reorientation produced by the
electric field gives rise to an augment in the apparent average
viscosity of the LC as a function of the applied electric field
�electrorheological effect�. The viscosity is also dependent
on the value of the pressure gradient giving rise to a non-
Newtonian behavior. Even more, the viscosity depends not
only on the magnitude of the pressure gradient but also on
the direction of the flow with flow thinning in one direction
and flow thickening in the other.

Also, we have found that the spatial distribution of the
first normal stress difference is positive in all the cross sec-
tion of the pipe except near the outer cylinder where a small

negative region is present. From this quantity, we have de-
rived the averaged first normal stress difference and found
that it is positive for all values of the pressure gradient and
electric field.

Finally, we have calculated the dragging forces on the
inner and outer cylinders and found an almost constant value
for different electric fields and a monotonic decrease as a
function of the pressure gradient.

It is important to point out that these directional and non-
Newtonian behavior of the confined liquid crystal are a con-
sequence of the coupling between the velocity field and the
escaped-like undistorted configuration. For this reason, the
nematic is able to store more elastic energy in one direction
than in the other.

We expect that our results on the non-Newtonian dynam-
ics of the nematic in a capillary and their electrorheological
manifestations could stimulate further theoretical and experi-
mental studies. In particular, the fact that this system shows a
directional response that can be electrically modified makes
it ideally suited for the design of various electrically con-
trolled devices with asymmetric non-Newtonian behavior.
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